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Abstract—

Although no consensus has been reached on the conditions
under which modularity emerges, we find the idea of special-
isation driving modularity highly plausible. Current abstrac-
tions have demonstrated emergence of modularity in scenarios
evolving Gene Regulatory Networks to show simple targeted
behaviours, but these methods are less successful in more
complex, real-world-level scenarios. We aim to study methods
that are more efficient and effective in these simple scenarios,
aiming to extend them to higher complexity. We engineer two
modifications to the system that advance this aim. Progressive
selection allows more than an order of magnitude reduction
in computational cost without damaging the emergence of
modularity, while dynamic specialisation produces significant
improvements in modularity while also modestly reducing
computational costs. We also provide some insight into the
first of the two evolutionary stages in this approach, providing
some explanation of why dynamic specialisation works.

1. Introduction

The Road to Modularity

Modularity is the divisibility of structures or functions
“into multiple sets of strongly interacting parts that are
relatively autonomous with respect to each other” [17] It
is ubiquitous in complex systems, from well-engineered
machines to naturally-evolved creatures [2]. The advantages
of modular systems seem endless. They include: that a
modular system can be more robust against both internal
and external corruptions, since modularity can contain per-
turbations within small regions, leaving other parts of the
system unaffected [11]; that more modular structures may
be more evolvable [12]; and that different modules can
operate cohesively with each other to perform more complex
functions [33].

Compared with engineered systems, natural creatures
implement the spirit of modularity even more heavily [4]:
modularity is omnipresent not only in all biological beings,
from simple single-cell bacteria to highly-complex animals
[16], but is also pervasive at all levels of structures within
a creature [18]. For example, humans have different organs

as modules undertaking different functions, and each organ
can be further divided into various tissues as modules that
are relatively independent from each other [29].

It is intriguing to investigate the conditions under which
biological systems acquire such high levels of modular-
ity. This is non-trivial: compared with engineered systems,
under evolutionary theory, biological creatures are not de-
signed [27]. The only feedback from nature is to fit into the
environment by competition with others. Nevertheless, non-
modular candidates can perform some (especially complex)
biological functions better than modular ones so that they
should be more competitive [22], [37]. Furthermore non-
modular changes are more likely to arise from random
mutations and recombinations than modular ones, making it
even harder to explains the ubiquity of modularity [31]. Thus
the origins of modularity are elusive, yet their discovery
could bring huge inspiration to engineering: we may build
systems that can spontaneously adjust themselves to be
modular and autonomously fit into novel environments [13].

Despite long-term interest, there is no consensus on the
conditions for modularity emergence [7]. Among various
theories, four stand out since their proposed conditions
seem biologically plausible. They are: mitigating conflicts
between preserving and modifying genes [32]; modularity-
varying evolutionary environments [10]; biological parsi-
mony pressures [3] and specialisation in biological organ-
isms [7]. We employ the latter because we view it as the
most plausible theory for the emergence of modularity: It
has no obvious conflicts with nature; moreover it is compat-
ible with multi-causal theories for the origins of modularity.

Motivations and Contributions

In [7], homeostasis is modeled by randomly generating
perturbations of a target state, and observing the ability of
systems to recover that target. In recent work [22], [24], we
observed that this sampling is binomial. This study arises
from a longer term program: currently, Wagner’s scenario
works well for simulating simple homeostasis problems.
However it does not extend well to more realistically-sized
problems [1]. We believe this results from the combination
of high dynamicity (from sampling noise) and a complex
fitness function. In [7], the number of possible perturbations
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grows exponentially with target size, and sample size needs
to follow this to keep noise within limits: this is clearly
intractable. We propose two modifications that we evaluate
on the small gene regulatory network (GRN) problems
of [7], but designed to extend to larger problems.

We note that in [7] the majority of gene regulatory
networks (GRNs) encounter, and evolve to restore, very
highly perturbed patterns. This is biologically unrealistic:
biological systems can typically recover from small dis-
turbances, but are less likely to recover from large ones,
unless anomalies such as cancer occur [8]. We propose a
modified selection mechanism, progressive selection, that
evaluates individuals in a progressive manner. It aims to
produce similar behaviour to full distributional evaluation
while evaluating far fewer perturbations (thus reducing ex-
ecution cost and simplifying the fitness landscape), while
also removing dynamicity.

We also note that in [7], a change of target occurs in
a fixed generation (500), by which time the population has
already achieved high performance and convergence on the
single-target problem. This has a number of potential prob-
lems. The solutions have already specialised to restore even
very highly perturbed targets; the population has reduced
diversity which it will need to recover after the change of
target; and the extended period wastes scarce computational
resources. Exogenous changes such as meteor strikes (which
fixed generation change simulates) do occur. But endoge-
nous changes are probably more common. For example,
the changed evolutionary pressures of emergent epidemics
often arise from population over-convergence [5], [28], [36].
In addition, specialisation often emerges as a result of
creatures becoming sufficiently complex [26]. Motivated
by these observations, we propose dynamic specialisation,
which avoids regulating overly perturbed homeostasis by
introducing a second target as soon as the system achieves
sufficient performance on the first.

We verify our hypotheses with a variety of experiments,
supported by statistical tests.

2. Related Work

Before explaining the evolutionary framework, we re-
view four theories explaining the evolutionary origins of
modularity, explaining why we view [7] as most plausible.

2.1. Conflicts Between Preserving and Modifying
Behaviours Induce Modularity

The theory asserts that directional selections favouring
changing some traits while maintaining others may explain
the origin of modularity [32]. Pleiotropic interactions, i.e.,
genes that influence two seemingly unrelated phenotypic
traits, can obstruct both the constancy of some and the al-
ternation of others [9]. Modularity of pleiotropic genes thus
emerges to avoid compromising the related phenotypic traits.
Modularity supports change of one trait while maintaining
the behaviours of others. This explanation seems plausible

because the proposed phenomenon is commonly observed
in nature: only a few traits are likely to change, most remain
stable during evolution [32], [35]. Nevertheless extended
experiments failed to validate this theory. This may result
from the genotype-phenotype map being overly simple [34].

2.2. Modular Environmental Changes Drive Mod-
ularity

Kashtan and Alon propose another theory: environmen-
tal modular changes may drive the emergence of modu-
larity [10]. In more detail, repetitive and constant alterna-
tions of sub-components within an environment result in
organisms evolving a higher-level of modularity. Two factors
make this plausible. The proposed conditions are common in
nature: environmental changes, such as fluctuations in tem-
peratures and changes in salinity, are ubiquitous [7]. Perhaps
more persuasively, the explanation is supported by observa-
tions on real-world creatures: metabolic networks of bacteria
living in variable environments exhibit more modularity than
those in steady environments [20]. However although natural
environments often change continuously, it is unclear to
what extent they vary modularly, leaving the quantitative
relationship between modularly-varying environments and
the emergence of modular organisms unclear [7].

2.3. Pasimony-Based Modularity-Inducing Models

Clune et al. argue that the evolutionary origin of modu-
larity comes from the cost associated with every connection
in the network [3]. They demonstrate this theory’s plausi-
bility by evolving artificial neural networks with or without
imposing penalties on the number of edges. The former
evolves significantly more modular networks. However the
theory has a critical problem as an explanation for biological
modularity. It is well known from early studies on parsi-
mony pressures in genetic programming [21], [38] that too-
large pressures lead to overly simple solutions: becoming
small generally has a much smoother search gradient than
becoming fit. Balancing these pressures is difficult, not
least because later stages of evolution benefit from high
parsimony pressures that would be destructive earlier.

Clune et al. in [3] avoid the issue by using a multi-
objective algorithm, NSGA2 [6]. However the undoubted
strengths of NSGA2 do not include biological plausibility:
it incorporates non-dominated sorting, a population-wide
operation that in nature would require a deus in machina.
In reality, biological organisms evolve to optimise a single
combined objective, being selected to fit the (constantly
changing) environment. While [3] has a lot to tell us about
how to ensure the emergence of modularity in engineered
systems, its relevance to understanding the emergence of
modularity in biological systems is more limited.

2.4. Modularity Emerges from Specialisation

Espinosa-Soto and Wagner claim that modularity
emerges from specialisation: modular structures arise as a
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Figure 1. Visualisation of two gene activity patterns. White and black boxes
stand respectively for activation and repression.

by-product of gene specialisation when networks try to regu-
late toward multiple different gene activity patterns [7]. They
observe changes in the structure of Wagner’s GRN model as
evolution proceeds. Conflicts between incompatible regula-
tion patterns favour the emergence of independent modules,
with fewer inter-module connections. We view this as more
plausible than the three preceding explanations for three
reasons. There is an observed correlation between modular
creatures and levels of specialisation [15]. In the simulated
experiments, increasing the number of gene activity patterns
can further improve the modularity, suggesting the potential
for evolving extremely complex creatures as seen in the
biological world [7]. Finally, the theory can be viewed as
a refinement of the first two theories: relative to the first,
sharing and specialised patterns can be seen as phenotypes to
preserve and modify; relative to the second, organisms may
evolve different gene patterns for different environments.

3. Evolutionary Framework

We briefly describe the procedures within the evolution-
ary framework: fitness evaluation, selection, recombination
and mutation. We also explain how modularity is measured.

3.1. Multi-Stage Evolution

We employ the evolutionary framework of [7], simulat-
ing the acquisition of new gene activity patterns (GAPs) as
evolution proceeds. The emergence of novel GAPs is com-
mon in natural evolution: for example unicellular organisms
must evolve multiple GAPs to develop into multicellular
creatures with diverse functions and morphologies among
different cells. In [7], a GAP with N genes is represented
as a discrete row vector s; = [s},...,sY]. The gene at each
location i can be either active (si = 1) or inactive (s = —1).

GAPs are incrementally introduced as evolutionary tar-
gets. In [7], only two GAPs are used, depicted in Figure 1.
It evolves with only the first GAP in the fitness function for
500 generations, then the second is added for 1500 more.

3.2. Discrete Gene Regulatory Network Model

Despite heterogeneity in functions and morphologies
among cells within an organism, as discussed in Figure 3.1,
to a first approximation all the cells share the same set of
genes. The differences between GAPs in cells are largely

controlled by gene-gene regulation. Networks of such gene-
gene relationships (activation or repression) are termed gene
regulatory networks (GRNGS).

In [7], a GRN over patterns with N genes is abstracted
as an N x N matrix ! . In more detail, The state transition
is regulated by GRN A as:

N
st = oY Ajsl], (1)
j=1

where o(z) = +1 if # > 0 and o(z) = —1 otherwise. Fig-
ure 3 shows the regulating roles of each GRN region, i.e., the
pairwise regulating relationships between GAP locations.

3.3. Fitness Evaluation

Espinosa-Soto and Wagner estimate the fitness of a GRN
based on their robustness against a randomly sampled set
of perturbations, leading to a noisy evaluation [7]. To accu-
rately evaluate a GRN’s fitness, we exploit the essence of
the perturbation sampling process: sampling from a binomial
distribution, to design a new fitness evaluation that considers
the entire perturbation set and weights the contribution of
each perturbation to the fitness based on its probability in
the distribution, eliminating the noise from sampling [23].
We briefly explain these two evaluation methods, referring
to the former and the latter respectively as stochastic and
distributional fitness evaluation.

Stochastic Evaluation. [7] evaluates fitness as the capabil-
ity of a GRN to regulate randomly sampled perturbed gene
activity patterns back to their original forms. To simulate the
disturbance of gene activity patterns, [7] generates a set of P
random perturbations of a pattern, with a probability of 0.15
of perturbing each gene to its opposite state. The GRNs are
recursively applied to each perturbed state until the resultant
pattern stops changing. This stabilised result is called an
attractor. [30] shows that, except for very rare cases, it takes
less than 30 transitions to reach an attractor. If an attractor
can be attained, the system returns the Hamming distance D
between the attractor and the original unperturbed pattern,
otherwise it returns the maximum Hamming distance D, .
It then calculates v; = (1 — D/Dinqz)° for each perturbed
patterns within the set P. Finally, it computes the fitness of
GRN ¢ over gene activation pattern ¢ as

filg) =1—e77, @

where 7 is the mean value over all ;.

1. We caution readers over a terminological problem. We are discussing
abstracted GRNs applied to abstracted GAPs which consist of abstracted
(biological) genes. However in evolutionary computation terms, the geno-
type is the GRN, so it would be natural to refer to the N2 GRN locations
as genes, rather than the N GAP locations. We will eschew the latter
terminology: when we refer to a gene, it has the abstracted biological
meaning, not the typical evolutionary computation meaning
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Figure 2. Illustration of a diagonal crossover with the pivot at 4. The same
patterns represent the GRN entries that the children share with the parents.

Distributional Evaluation. Instead of randomly sampling
perturbations from a binomial distribution, we replace 7 in
Equation 2 with the directly evaluated expectation of ~,
thus removing the stochasticity of sampling. The process
is described in greater detail in [23]).

3.4. Mutation

Mutation in [7] applies to a gene ' in a GAP (i.e., to
a row of a GRN), and either adds an interaction to, or
deletes an interaction from, that row. In GAP terms, it either
adds an incoming interaction to, or deletes one from, the
corresponding gene. Gene u has a probability of © = 0.2
to mutate in each generation, corresponding to a per-GRN-
location mutation rate of 0.02 and a per-genome mutation
probability of 0.893. However [7] uses a biased mutation
to preserve sparsity of edges in the GRN. If gene u is to
mutate, it has a probability p(u) of losing an interaction and
q(u) =1 — p(u) of gaining one. p(u) is defined as

4r,,

p(u) = m

where N is the number of genes in the target pattern, and
r,, 1s the number of regulators (promoters or repressors) of
gene u i.e., the number of nonzero entries in the row of the
GRN. When a regulator is added, it is equally likely to be a
promoter (+1) or a repressor (-1). If there are no regulators
to delete, or no openings to add one, mutation is a no-op.
Note that Equation 3 predicts a fixpoint of r, = 0.2, but
because the preceding point leads to an additional bias (rows
are more likely to be empty than full), the equilibrium edge
density for selection-free evolution is around 0.22.

3)

3.5. Recombination

In [7], no recombination (crossover) was implemented.
However homologous crossover is well recognised in both
biology and evolutionary computation as an effective means
to combine genetic material. Horizontal crossover, which
exchanges whole rows, was used in [14]. However it ignores
the diagonal symmetry of the GRN effect (through ma-
trix multiplication). We implemented a crossover (diagonal

crossover) to exchange blocks diagonally, as illustrated in
Figure 2. A "pivot” 7 is randomly selected from {1,...,10},
giving a “pivot point” [¢, i]. When matrices A;, Ao are cho-
sen to cross over at pivot ¢, the sub-matrices: A[l : 7,1 : 4]
and Afi +1 : 10,7 + 1 : 10 are left untouched while the
remainders are exchanged.

3.6. Modularity Evaluation

We used the Q score introduced by [19], which compares
the abundance of intra-module connections of a known
network with that a randomly connected network. Formally,
Q is defined as:

L d
[ i \2
Q—;[L (57)7] @)
where ¢ represents one of the K prospective modules in a
network, L means the total number of edges in the network,
[; is the number of connections in module ¢, and d; the sum
of the number of interactions that each node in module ¢
has [7]. Thus a network with high modularity has more intra-
module connections and fewer inter-module connections.
For two modules, this @ value lies in the range [—31,1),
but the upper bound depends on the number of modules,
making it difficult to compare experiments with different
numbers of modules. Instead we used the normalised @,
value of [10], which normalises the modularity of a network
by comparison with a number of random networks with the
same attributes. It is calculated as:

_ Q B Qran
Qn B Qmax - Qran

where (.., represents the average of () score over 10000
random networks, with the same number of nodes and edges
as the known network and QQn.x is the maximum () score
among those random networks.

(&)

4. Framework Extensions

In this section, we detail two extensions to the frame-
work: progressive selection and dynamic specialisation.

4.1. Progressive Selection

In the first stage of evolution, when there is only one
GAP target, the system readily achieves optimum fitness, as
seen in Figure 4. In doing so, it regulates all perturbations
back to the target. However once a second target is intro-
duced, such performance is impossible. The second target
is actually a perturbation (of weight 5) of the first, so that
if the system regulates the second target back to the first
(which it will do if it was optimal for the first stage), it
by definition also regulates a weight zero perturbation of
the second target to the first. This is suboptimal, since a
weight zero perturbation carries far more influence in the
fitness function than a weight 5 perturbation. This leads to
a conflict in the fitness function: whenever more than half
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Figure 3. Illustrations of the expected GRN functional regions and a
particular GRN example. Left: Four functional regions of a GRN to regulate
two GAPs as illustrated in Figure 1, indicating what GAP locations regulate
what. Right: Illustrations of which entries of a GRN regulate shared GAP
locations and which regulate non-shared ones.

of the second half of a target is perturbed, it will be more
beneficial to regulate back to the “other” target than itself.

This leads to a plausible improvement. Since longer
perturbations will be rarely sampled by binomial sampling
(and thus carry little weight in the fitness function), why
bother to sample these confusing perturbations at all? In-
stead, we introduce a perturbation size limit [, and only
evaluate GRNs on perturbations of weight up to [. In this
work, since perturbations of length greater than 2 can lead
to confusion if the whole of the perturbed part falls within
the non-shared part of the two targets, we set | = 2.
This saves enormously on computational cost. To gain even
further speedup, we introduce a further wrinkle: since the
perturbations of weights 0 and 1 have the most influence on
the fitness function, when we perform tournament selection,
we only evaluate perturbations of weights 0 and 1. If one of
the GRNs wins the tournament based on this evaluation, we
go no further. Only if two GRNs are tied on this evaluation
do we evaluate them on weight 2 perturbations. We call this
overall process progressive selection. Combining these two
facets aims to reduce the number of executions of the GRN,
the inner loop of this algorithm.

4.2. Dynamic Specialisation

s o
0.9
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0.8 25

o7 ' 20
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0 100 200 300 400 500 0 10 20 30 40 50

Figure 4. Mean best-of-population fitnesses and mean population-wide
pairwise Manhattan distances between GRNs over 100 runs. The vertical
lines show the generation at which the second GAP is added to the target
using the mechanism of [7].

Dynamic specialisation replaces the fixed introduction
of new target patterns of [7] with a more flexible scheme.
Theoretically, this might best be based on fitness popula-
tion convergence, but since we already know the optimum

fitness, it is simpler and equally effective to base it on
convergence to the optimum. We introduce a new hyper-
parameter k that determines when to add a new GAP to
the target: when the proportion of the population that has
attained maximum fitness reaches k. For example, k = 0.5
sets the threshold as when 50% of individuals have achieved
the maximum fitness. Preliminary testing showed that this
value, £ = 0.5, is an effective choice. As a fail-safe, if this
fitness convergence is not achieved by generation 500, the
second GAP is added to the target anyway.

The value of k affects two different aspects of the evolu-
tion. If the value of k is close to zero, it will switch targets
with a population that has few optimal members, which
can easily disappear after the change of fitness function,
disrupting the feature of the overall scenario that is expected
to generate modularity. On the other hand, it is well-known
that diversity is critical in dynamic evolution [25], so that a
value of k close to 1 affects the ability of the population to
recover from the change of target. Between these two limits,
values of k in the mid-range primarily affect the running
time of the algorithm rather than its behaviour, but in that
mid-range convergence is rapid, so that small changes in k
do not much affect run time, nor do they greatly change
behaviour.

Enhancing Evolutionary Efficiency and Effectiveness.
As Figure 4 illustrates, in a typical run, optimum fitness is
first attained very early, long before 500 generations, and
the population diversity is substantially reduced. This has
two consequences. The first is reduced efficacy: an over-
converged population makes it more difficult for the popu-
lation to re-adapt when a second target pattern is introduced.
The second is reduced efficiency: why spend time running
further generations when a sufficient level of convergence
to the first target has been attained.

5. Experiment Settings

The target gene activity patterns and relational param-
eters in our evolutionary simulations are listed in Tables 1
and 2. The Wilcoxon Signed-Rank Test was used to validate
the results of experiment. Each experiment had 100 runs and
our evaluation measured the eventual fitness as well as the
normalised score @, in the final generation.

In comparison with [7], we added an additional hyper-
parameter k, and used distributional fitness evaluation,

TABLE 1. GENE ACTIVITY PATTERNS

Target Pattern Generation to add Pattern
+1 -1 41 -1 +1 -1 41 -1+1-1 0
500 or k

+1 -1 +1 -1 +1 41 -1 +1 -1 +1

6. Experimental Results

In this section, we report the experimental performance
of our modifications to the evolutionary framework.
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TABLE 2. PARAMETERS IN EVOLUTIONARY SIMULATION

Max Steps Edge Size Perturbation Rate

30 20 0.15

Mutation Rate Population Size Selection Type

0.2 100 Tournament

Tournament Size Reproduction Rate Maximum Generation

3 0.2 1000

k Limitation Size of Per-  Significant Test
turbation

0.5 2 Wilcoxon Signed Rank

TABLE 3. PARAMETERS EXPLANATIONS IN EVOLUTIONARY

SIMULATION

Gene Activity Patterns

the patterns to which GRN evolves

Pattern Addition

the generation where a target is added

Edge Size

the initial number of edges

Perturbation Rate

the expected proportion of genes perturbed

Mutation Rate

the probability of a GRN node to lose or
gain an interaction

Population Size

the number of individuals in a generation

Selection Type

the type of selection

Tournament Size

the number of tournaments in selecting a
parent

Reproduction Rate

the proportion of offspring generated by
crossover

Maximum Generation

the generation where the evolution termi-
nates

Max Steps

the maximum time for an individual to
reach an attractor

Limitation Size of Per-
turbation

The maximum perturbation size in progres-
sive

6.1. Progressive Selection Improves

Efficiency

. o e .
without Sacrificing Effectiveness
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Figure 5. Number of perturbations evaluated over the course of evolution.
Left panel: progressive selection vs distributional evaluation; right panel:
progressive selection vs stochastic evaluation.

We compared three treatments: tournament selection
with distributional evaluation; tournament selection with
stochastic evaluation; and progressive selection using 100
trials for each. All introduced the second GAP target at
generation 500 as per [7]. We recorded the total number of
perturbations evaluated (which is the inner loop of the whole
algorithm, and hence dominates computational cost) in each

generation. The results in Figure 5 shows that while distri-
butional evaluation has roughly twice the computational cost
of stochastic evaluation in both phases, progressive selection
is roughly 20 times faster in the first phase, and closer to
40 times in the second.
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Figure 6. Mean fitness (left) and modularity (right) for the second stage of
evolution over 100 trials: distributional fitness vs progressive selection
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Figure 7. Mean fitness (left) and modularity (right) for the second stage of
evolution over 100 trials: stochastic fitness vs progressive selection

To test the effectiveness of progressive selection, for
each generation we extracted the fitness and (), values of the
fittest individual, and averaged over 100 trials. Comparing
this with the corresponding values for distributional and
stochastic evaluation in Figure 6 and Figure 7, we see that
at the end of the run (1000 generations), despite the very
large gain in efficiency, progressive selection performs at
least comparably with the other two treatments, and even
generates high modularity somewhat earlier.

6.2. Dynamic Specialisation Promotes Robustness
and Modularity

TABLE 4. FINAL GENERATION BEST FITNESS (OVER 100 TRIALS) WITH
DISTRIBUTIONAL AND STOCHASTIC FITNESS EVALUATION: FIXED
GENERATION VS DYNAMIC SPECIALISATION FOR SECOND GAP
INCLUSION. BOLD NUMBERS INDICATE P-VALUES BELOW 0.01.

Fixed Dynamic  p-value
Distributional Fitness — 0.927 0.934  0.0200
Distributional @y 0.767 0.894  0.0020
Stochastic Fitness 0.931 0.938  0.0005
Stochastic Qn 0.763 0.854  0.0300

For both distributional and stochastic fitness evaluation,
we compared static with dynamic specialisation, running
100 trials of each treatment for 1000 generations. For
each treatment, we collected the best-fitness individuals
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from the final generation of each trial, and compared their
mean fitness and modularity, computing p-scores for any
differences. For each metric, dynamic specialisation out-
performed fixed-generation specialisation, though only the
@, value for distributional evaluation and the fitness value
for stochastic evaluation were significantly different at the
p = 0.01 level (Table 4).
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Figure 8. Mean fitness (left) and modularity (right) of the fittest individual
in the final generation averaged over 100 runs using distributional evalua-
tion: dynamic specialisation vs fixed generation
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Figure 9. Mean fitness (left) and modularity (right) of the fittest individual
in the final generation averaged over 100 runs using stochastic evaluation:
dynamic specialisation vs fixed generation

We show the progress of fitness and modularity for both
distributional and stochastic fitness evaluation as generations
proceed in Figure 8 and Figure 9. There is an improvement
in fitness and modularity due to the change of the target
happening earlier, so that evolution has longer to converge
on the more difficult second stage problem. But it also ap-
pears that recovery after the change of target is more rapid,
especially for fitness, suggesting that over-convergence, and
hence the need to recover diversity, may play a part.

7. Discussion

In this section, we re-visit experimental phenomena that
we could not comprehend at the time [24]. Further insight
into the multi-stage evolutionary framework enable us to
better understand these experimental results.

7.1. Regulating Processes of Stage 1

As Figure 4 illustrates, with few exceptions, almost all
runs generate GRNs that can regulate any perturbations of
the first GAP target back to itself — even for the extreme
perturbation that inverts all GAP locations. In the cases we
examined, these optimal GRNs contained a column made up

-1
-1 +1 +1
+1 +1 +1 -1
-1 +1 +1
-1 +1
+1
-1 -1 +1 -1
+1 -1

Figure 10. An example of a GRN whose second column is an all-zero one.
The entries of +1 and -1 stand for activation and repression respectively.
Empty entries mean no edge.

entirely of zeros. This always corresponds to a location with
target value -1; the zero column immediately regulates the
corresponding location to —1. Other columns of the GRN
then leverage this guaranteed —1 value to regulate other
locations. Recursively, these newly corrected locations are
further utilised to control more locations, until all locations
are stable. Figure 10 shows an example of such an evolved
GRN. From any input, this GRN recovers the GAP [1, -1,
+1, -1, +1, -1, +1, -1, +1, -1]. We refer to such optimal
evolved GRNs as zero-column based.

7.2. Limitations of Zero-Column Regulation

As we showed in [23], an optimal GRN for the two-
target (second stage) optimisation regulates any perturbation
of the first half of the target back to itself, and the second
half to whichever of the two targets is closer (in Manhattan
distance). If an optimal solution to the first target is zero-
column based, there are two cases.

Where the zero column occurs in the right half of the
GRN, it immediately regulates the corresponding location
in an input GAP to —1. If the majority of the right-hand of
the target differs from the first target, a second-stage-optimal
GRN should regulate it instead to +1. But it is difficult to
make this change, because changing that column will then
disrupt all regulation that depends on that zero column —
including (directly or indirectly) all locations in the left-
hand half of the GAP, which optimally should stay stable.

Conversely, if the zero column lies in the first half, this
assignment should stay stable. But then, any links from that
location to any location on the right hand side fall into
the same problem as the zero column in the previous case:
they must stop depending on the left hand columns they
previously depended upon.

In effect, this arises because the second-stage-optimal
GRN, for the first half of the target, needs only to solve a
problem of recovering a specific target. But for the second,
it needs to solve a majority-match problem.

These considerations suggest that over-convergence to
zero-column solutions in the first stage is likely to lead to
inefficient evolution in the second stage, providing further
justification for dynamic specialisation.
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7.3. How General are the Methods Described Here

Many computationally expensive applications of evo-
lutionary algorithms involve fitness functions which are
too expensive to evaluate precisely, but which can be ap-
proximated with increasing precision at the cost of more
computation. The general idea of the progressive selection
operator— to use a form of tournament selection, in which the
fitness function is lazily evaluated only as far as is necessary
to reasonably reliably decide the tournament — is very widely
applicable. In most cases, it is not important to precisely
estimate the tournament winner, since small random errors
in this process merely add a small amount of stochasticity
to a process (an evolutionary algorithm) that is deliberately
stochastic in any case. This wider class of selection operators
is correspondingly widely applicable. The variant here uses
deep specific knowledge about the structure of the fitness
function (based on binomial sampling) and of the relative
influence of different perturbations; this specific structure is
peculiar to Wagner’s scenario, but fitness functions based
on binomial sampling are quite common in artificial life
simulations, so that very similar methods may be much more
widely aplicable.

Dynamic specialisation applies to a much narrower
range of simulations, where the behaviour of the system un-
der consideration is episodically dynamic. In such scenarios,
efficient evolution able to track the changing fitness function
will occur when the population is partially converged at
the time the target changes. This is reasonably common in
artificial life simulations, but requires a computation of di-
versity at regular intervals whose cost is generally quadratic
in the population size. Linear cost (as here) is generally only
achievable when the exact optimum is known, and is likely
to be found in all runs.

8. Conclusion

Emergence of modularity is a key issue for both under-
standing the evolution of natural systems, and engineering
complex artificial systems. For example, recent studies sug-
gest that human intelligence arises from modular brain struc-
tures. We study and improve Wagner’s modularity inducing
framework. Our long-term aim is to extend the complexity
of the systems it can evolve, to approach that of simpler
biological networks. Short-term, we focus on improving
the computational efficiency and the effectiveness of the
system for more complex problems. Here, section 6 reveals
that progressive selection can provide very large speedups
with no cost to effectiveness, while dynamic specialisation
significantly improves modularity as well as providing mod-
est computational speedups and section 7 reveals further
insights into the computational task of [7] on which we
hope to leverage future engineering improvements.
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